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P

I N s

4 m s–1

3 m s–1

60°
q°

A particle P of mass 0.4 kg is moving horizontally with speed 4 m s−1 when it receives an impulse of

magnitude I N s, in a direction which makes an angle (180 − θ)◦ with the direction of motion of P.

Immediately after the impulse acts P moves horizontally with speed 3 m s−1. The direction of motion

of P is turned through an angle of 60◦ by the impulse (see diagram). Find I and θ. [7]

2

2 kg 3 kg

A B

4 m s–1

v m s–1

Two uniform smooth spheres A and B, of equal radius, have masses 2 kg and 3 kg respectively. They

are moving on a horizontal surface when they collide. Immediately before the collision, A has speed

4 m s−1 and is moving along the line of centres, and B has speed v m s−1 and is moving perpendicular

to the line of centres (see diagram). The coefficient of restitution is 0.6. The direction of motion of B

after the collision makes an angle of 45◦ with the line of centres. Find the value of v. [7]

© OCR 2010 4730 Jan10



3

3

T

A
2W

B

W

Ca

45°

a

a

a

a

Two uniform rods AB and BC, each of length 2a, have weights 2W and W respectively. The rods are

freely jointed to each other at B, and BC is freely jointed to a fixed point at C. The rods are held in

equilibrium in a vertical plane by a light string attached to A and perpendicular to AB. The rods AB

and BC make angles 45◦ and α, respectively, with the horizontal. The tension in the string is T (see

diagram).

(i) By taking moments about B for AB, show that W =
√

2T . [3]

(ii) Find the value of tan α. [6]

4 A particle P of mass 0.2 kg travels in a straight line on a horizontal surface. It passes through a point

O on the surface with speed 2 m s−1. A resistive force of magnitude 0.2(v + v2)N acts on P in the

direction opposite to its motion, where v m s−1 is the speed of P when it is at a distance x m from O.

(i) Show that
1

1 + v

dv

dx
= −1. [3]

(ii) By solving the differential equation in part (i) show that
−ex

3 − ex

dx

dt
= −1, where t s is the time

taken for P to travel x m from O. [5]

(iii) Hence find the value of t when x = 1. [3]

5 A light elastic string of natural length 1.6 m has modulus of elasticity 120 N. One end of the string is

attached to a fixed point O and the other end is attached to a particle P of weight 1.5 N. The particle

is released from rest at the point A, which is 2.1 m vertically below O. It comes instantaneously to

rest at B, which is vertically above O.

(i) Verify that the distance AB is 4 m. [4]

(ii) Find the maximum speed of P during its upward motion from A to B. [7]
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Fig. 1 Fig. 2

q

v m s–1

v m s–1

A light inextensible string of length 0.8π m has particles P and Q, of masses 0.4 kg and 0.58 kg

respectively, attached to its ends. The string passes over a smooth horizontal cylinder of radius 0.8 m,

which is fixed with its axis horizontal and passing through a fixed point O. The string is held at rest

in a vertical plane perpendicular to the axis of the cylinder, with P and Q at opposite ends of the

horizontal diameter of the cylinder through O (see Fig. 1). The string is released and Q begins to

descend. When OP has rotated through θ radians, with P remaining in contact with the cylinder, the

speed of each particle is v m s−1 (see Fig. 2).

(i) By considering the total energy of the system, obtain an expression for v2 in terms of θ. [5]

(ii) Show that the magnitude of the force exerted on P by the cylinder is (7.12 sin θ − 4.64θ)N. [4]

(iii) Given that P leaves the surface of the cylinder when θ = α, show that 1.53 < α < 1.54. [4]

7 A particle P of mass 0.5 kg is attached to one end of each of two identical light elastic strings of

natural length 1.6 m and modulus of elasticity 19.6 N. The other ends of the strings are attached to

fixed points A and B on a line of greatest slope of a smooth plane inclined at 30◦ to the horizontal.

The distance AB is 4.8 m and A is higher than B.

(i) Find the distance AP for which P is in equilibrium on the line AB. [5]

P is released from rest at a point on AB where both strings are taut. The strings remain taut during

the subsequent motion of P and t seconds after release the distance AP is (2.5 + x)m.

(ii) Use Newton’s second law to obtain an equation of the form
d2x

dt2
= kx. State the property of

the constant k for which the equation indicates that P’s motion is simple harmonic, and find the

period of this motion. [5]

(iii) Given that x = 0.5 when t = 0, find the values of x for which the speed of P is 2.8 m s−1. [4]
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4730 Mechanics 3 
1  

0.4(3cos60o – 4) = -I cosθ                     (= -1) 
0.4(3sin60o) = Isinθ                     (= 1.03920) 
 

M1 
A1 
A1 
 
 

For using I = Δmv in one direction 
 
SR: Allow B1 (max 1/3) for  
3cos60o – 4 = -I cosθ  and 3sin60o = Isinθ  

 [tanθ  = -1.5 3 /(1.5 – 4);  
                   I2 = 0.42[(1.5 – 4)2 + (1.5 3 )2]] 

 
M1 

For eliminating I or θ  (allow following SR 
case) 

 θ  = 46.1 or I = 1.44 A1 Allow for θ  (only) following SR case. 

  M1 For substituting for θ or for I (allow 
following SR case) 

 I = 1.44 or θ  = 46.1 A1ft 
   [7] 

ft incorrect θ  or I; allow for θ  (only) 
following SR case. 

 Alternatively 
 
I2 = 1.22 + 1.62 – 2×1.2×1.6cos60o        or  
 ‘V’2 = 32 + 42 – 2×3×4cos60o 
  
I = 1.44 
 

)08.2(13

60sin

)2.1(3

sin

oror
=θ

 or 

αθα −== 120
)08.2(13

60sin

)6.1(4

sin
and

oror
 

 
M1 
 
A1 
M1 
A1 
M1 
 
 
 
 
A1ft 
 

 
For use of cosine rule 
 
 
For correct use of factor 0.4 (= m) 
 
For use of sine rule 

 
 
α must be angle opposite 1.6;  
 (α = 73.9) 
ft value of I or ‘V’ 

  θ  = 46.1 A1 
    [7] 

 

2  
 
2a + 3b = 2×4 
 
b – a = 0.6×4 
[2(b - 2.4) + 3b = 8] 
b = 2.56 
v = 2.56 

 
M1 
A1 
M1 
A1 
M1 
A1 
B1ft 
    [7] 

For using the principle of conservation of 
momentum 
 
For using NEL 
 
For eliminating a  
 
ft v = b 

3(i)  
2W(a cos45o) = T(2a) 
W = 2 T 

M1 
A1 
A1 
   [3] 

For using ‘mmt of 2W = mmt of T’ 
 
AG 

(ii) Components (H, V) of force on BC at B are  
H = -T/ 2 and V = T/ 2 -2W 
 
W(a cosα) + H(2a sinα) = V(2a cosα) 
 
[W cosα - T 2 sinα = T 2 cosα -4Wcosα] 
T 2 sin α = (5W - T 2 ) cos α 
tan α = 4 

 
B1 
M1 
A1 
 
M1 
A1ft 
A1 
  [6] 

 
 
For taking moments about C for BC 
 
For substituting for H and V and reducing 
equation to the form  X sinα = Y cosα 
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 Alternatively for part (ii) 
 
anticlockwise mmt =  
           W(a cosα) +2W(2a cosα + a cos45o) 
= T[2a cos(α – 45o) + 2a]  
[5W cosα +  2 W =   
                          T( 2 cosα + 2 sinα) + 2] 
T 2 sin α = (5W - T 2 ) cos α 
tan α = 4 

 
M1 
 
A1 
A1 
 
M1 
A1ft 
A1 
    [6] 

 
For taking moments about C for the whole 
 
 
 
For reducing equation to the form  
                                   X sinα = Y cosα 
 
 

4(i) [-0.2(v + v2) = 0.2a] 
[v dv/dx = -(v + v2) 
[1/(1 + v)] dv/dx = -1 
 

M1 
M1 
A1 
   [3] 

For using Newton’s second law 
For using a = v dv/dx 
AG 

(ii) 
 
 

 
ln (1 + v) = -x (+ C) 
ln(1+ v) = -x + ln3 
[(1 + dx/dt)/3 = e-x  dx/dt = 3e-x -1 
                                      ex dx/dt = 3 – ex] 
[-ex/(3 – ex)] dx/dt = -1 

M1 
A1 
A1 
 
M1 
A1 
   [5] 

For integrating  
 
 
 
For transposing for v and using v = dx/dt 
AG 

(iii) [ln(3 – ex) = -t + ln2] 
ln(3 – ex) = -t + ln2 
Value of t is 1.96 (or ln{2 ÷ (3 – e)} 

M1 
A1 
A1 
   [3] 

For integrating and using x(0) = 0 

5(i)  
Loss of EE = 120(0.52 – 0.32)/(2×1.6)  
                                  and gain in PE = 1.5×4 
 
v = 0 at B and loss of EE = gain in PE (= 6)     
                                     distance AB is 4m 

M1 
 
A1 
M1 
 
A1 
   [4] 

For using EE = λx2/2L and PE = Wh 
 
 
For comparing EE loss and PE gain  
 
AG 

(ii) [120e/1.6 = 1.5] 
e = 0.02 
Loss of EE = 120(0.52 – 0.022)/(2×1.6) 
       (or 120(0.32 – 0.022)/(2×1.6)) 
Gain in PE = 1.5(2.1- 1.6 – 0.02) 
        (or 1.5(1.9 + 1.6 + 0.02) loss) 
[KE at max speed = 9.36 – 0.72  
                                             (or 3.36 + 5.28)] 
½ (1.5/9.8)v2 = 9.36 – 0.72 
Maximum speed is 10.6 ms-1 
 

M1 
A1 
 
B1ft 
 
B1ft 
 
M1 
A1 
A1 
   [7] 

For using T = mg and T = λx/L 
 
 
ft incorrect e only 
 
ft incorrect e only 
For using KE at max speed  
      = Loss of EE – Gain (or + loss) in PE 

 First alternative for (ii) 
x is distance AP 
[½ (1.5/9.8)v2  + 1.5x + 120(0.5 – x)2/3.2 =  
                                                120 x0.52/3.2] 
KE and PE terms correct 
EE terms correct 
v2 = 470.4x – 490x2 
[470.4 – 980x = 0] 
x = 0.48 
Maximum speed is 10.6 ms-1 

 
 
 
M1 
A1 
A1 
A1 
M1 
A1 
A1 

 
 
 
For using energy at P = energy at A 
 
 
 
For attempting to solve dv2/dx = 0 



4730 Mark Scheme January 2010 

 36

 Second alternative for (ii) 
[120e/1.6 = 1.5] 
e = 0.02 
[1.5 – 120(0.02 + x)/1.6 = 1.5 x /g] 
 
 
 

n = 490   

 
M1 
A1 
M1 
 
 
M1 
A1 
 

 
For using T = mg and T = λx/L 
 
For using Newton’s second law 
For obtaining the equation in the form  
x = -n2x , using (AB – L – eequil) for 
amplitude  and using vmax = na.  

 a = 0.48 
Maximum speed is 10.6 ms-1 

A1 
A1  

 

6(i) PE gain by P = 0.4g × 0.8 sinθ  
PE loss by Q = 0.58g × 0.8θ  
 
½ (0.4 + 0.58)v2  = g × 0.8(0.58θ  –0.4sinθ ) 
v2 =  9.28θ  - 6.4sinθ  

B1 
B1 
M1 

A1ft 
A1 
   [5] 

 
 
For using KE gain = PE loss 
 
AEF 

(ii) 
 
 

 
 
0.4g sinθ  – R = 0.4v2/0.8 
[0.4g sinθ  – R = 4.64θ  – 3.2 sinθ ] 
R = 7.12 sinθ  – 4.64θ  

 
M1 
A1 
M1 
A1 
   [4] 

For applying Newton’s second law to P and 
using a = v2/r 
 
For substituting for v2 

AG 

(iii)  
R(1.53) = 0.01(48...), R(1.54) = -0.02(9...) or 
simply R(1.53) > 0 and R(1.54) < 0 
 
 
 
 
R(1.53) × R(1.54) < 0 1.53 < α < 1.54 

M1 
 
A1 
 
 
 
M1 
A1 
   [4]  

For substituting 1.53 and 1.54 into R(θ ) 
 
 
For using the idea that if R(1.53) and 
R(1.54) are of opposite signs then R is zero 
(and thus P leaves the surface) for some 
value of θ between 1.53 and 1.54.  
AG 
 

7(i)  
TAP = 19.6e/1.6 and TBP = 19.6(1.6-e)/1.6 
 
0.5g sin30o + 12.25(1.6 – e) = 12.25e 
Distance AP is 2.5m 
 

M1 
A1 
M1 
A1ft 
A1 
   [5] 

For using T = λe/L 
 
For resolving forces parallel to the plane  

(ii) 
 
 

Extensions of AP and BP are 0.9 + x and  
                                      0.7 – x respectively 
0.5g sin 30o + 19.6(0.7 – x)/1.6  
                            – 19.6(0.9 + x)/1.6 = 0.5 x  
x = -49x  
 
Period is 0.898 s 
 

 
B1 
 
B1ft 
B1 
M1  
A1 
  [5] 

 
 
 
 
AG 
For stating k < 0 and using T = 2π/ k−  

(iii)  
2.82 = 49(0.52 – x2) 
x2 = 0.09 
 
x = 0.3 and -0.3 
 

M1 
A1ft 
A1 
 
A1ft 
   [4] 

For using v2 = ω2(A2 – x2) where ω2 = -k 
ft incorrect value of k 
May be implied by a value of x 
ft incorrect value of k or incorrect value of 
x2 (stated) 
 


